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SUMMARY 

PROBLEM 

Detection of a sinusoid obscured by white noise. 

RESULTS 

1. Currently employed methods for the detection of a sinusoid obscured by white 
noise were related to three classical problems of detection theory. The discrete Fourier 
transform, the power spectrum, and tht averaged power spectrum each were shown to be 
the optimal processor (in the sense of making a least-risk decision) for a particular signal 
model. 

2. The first- and second-order statistics under H| (signal plus noise) and HQ (noise 
alone) were compiled for seve ai alated processing structures of current interest. Included 
were the autocorrelation function and the recursive exponential correlator. 

RECOMMENDATIONS 

1. Extend the ROC (receiver operating characteristic) performance results of this 
report to include the autocorrelation function and recursive exponential correlator process- 
ing structures. 

2. Investigate performance via the ROC curve of the discrete Fourier transform, 
autocorrelation function, and recursive exponential correlator processing structures when 
the sinusoid's frequency varies over the observation interval. 
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PROCESSOR STRUCTURES FOR THE DETECTION OF A 
SINUSOID OBSCURED BY WHITE NOISE 

I. INTRODUCTION 

This report has two main thrusts. Pumarily, the desire is to relate currently 
employed methods for the detection of u sinusoid obscured by white noise to three classical 
problems of detection theory. It will be shown that the discrete Fourier transform, the 
power spectrum, and the averaged power spectrum are each the optimal processor (in the 
sense of making a least-risk decision) for a particular signal model. The utilization of one of 
these processors impHcity assumes that particular signal model to exist and thus defines an 
upper bound on performance even if the actual received signal process could admit a proc- 
essing scheme whose performance would be superior. Of secondary importance, the first- 
and second-order statistics under H | (signal plus noise) and HQ (noise alone) are compiled 
for several related processing schemes of current interest. Included are the autocorrelation 
function and the recursive exponential correlator. These statistics will prove useful in pre- 
dicting the performance of such schemes in lighi of the processor structures already 
mentioned. 

Our fundamental goal is the detection of a sinusoid obscured by white noise. If the 
form of the received signal was known exactly, the optimal detector would simply threshold 
the output of a filter matched to the signal waveform. Unfortunately, the actual situation 
encountered is one where phase, amplitude, and frequency uncertainty usually exists. 

A commonly employed processor structure for detection is a display of the discrete 
Fourier transform magnitude squared (|DFT|-) of the observed time series (i.e., the power 
spectrum). In addition, averaging of the power spectra from several consecutive data sets 
often is performed either visually or automatically to increase the detcctability of particu- 
larly weak signals. 

This report will discuss several potential configurations for the detector structure. 
The reference point for their comparison will be the following two hypothesis testing 
problem: 

H,: X(n) ^ S(n)+n(n) 

H0:  X(n) = n(n). (1.') 

where: 

0<n<N-l 

x(n) the observed sequence 

S(n) = A cos (2irf0nA + 0) the signal sequence 

n(n) the white Gaussian noise sequence; n(n) ^ N(0,a"). 



The assumption is made that the observed sequence was obtained from a continuous time 
series (0 < t < (N-l )A) bandlimited to W hertz and sampled every A ■ I /2W seconds. 

The motivation for considering several detector structures can be found in the details 
of any one particular problem. Due to considerations of computational speed or the under- 
lying physics of a given situation, one structure may be preferred over another. For example, 
discrete Fourier transforms are faster to compute than autocorrelation functions. However, 
the ability to window the autocorrelation function before transforming to the frequency 
domain provides a certain degree of flexibility in what the resulting display looks like. 
Another concern is stability of the sinusoid. If its phase or frequency vary with time, 
averaging of power spectra computed from short consecutive data sets may be necessary to 
achieve the best detectability. 

The organization of this report is as follows. In Section II, the likelihood ratio proc- 
essor is defined and its performance evaluation in terms of the ROC (receiver operating 
characteristic) curve is discussed. The next three sections develop three optimal receiver 
structures - SKE (signal known exactly), SKEP (signal known except for phase), and SKEP 
Independent Increments. Section VI defines the discrete Fourier Transform (DFT) and 
relates it to each of the three optimal detector structures mentioned above. The autocorre- 
lation function and its relationship to the power spectrum of a sequence are the subject of 
the following section. Lastly, Section VIII develops expressions for the REC (recursive 
exponential correlator). 

II. DETECTION THEORY 

A. The Likelihood Ratio 

A helpful baseline from which to compute various detector structures is that of the 
likelihood ratio processor. Let the vector of observables be denoted by 

X = IX(0)...,X(N-1)1T. (2.1) 

Based upon the observation vector X e x< the processor must make a decision (DQ or D]) as 
to which hypothesis it believes is true. Classical detection theory has shown that decisions 
based upon the likelihood ratio are optimum for a wide range of goodness criteria (Peterson. 
Birdsall, and Fox. 1954) 

A I^XIH.)    D, 
A(X) £ -—i-       '   T,. (2.2) 

P(X|H0)    ^ 
D0 

Birdsall has shown more generally that any optimality criterion based on "detection 
probability" P(D]|H]) and "false alarm probability" P(D| IHQ) where good decisions are 
preferred over bad leads to the calculation of A(X) as the decision statistic (Birdsall. 1973). 
Thus, a separation is achieved between the processing of X and the actual optimality crite- 
rion chosen which arises in the selection of a threshold value TJ. 

The situation may arise where one or several parameters under either or both HQ and 
H| are uncertain. These are then modeled as random variables and any prior knowledge 
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about them is summarized by a priori probability density functions P{0Q) and p(ö |). The 
desired decision statistic now becomes the ratio of marginal probability density functions 
onx: 

A(X) = i 
L 

P(X|6l|,H1)p(Ö|)dö1 

P(X|ö0.H0)p(Ö0)dÖ0 

(2.3) 

where 91 e0| and OQ CQQ. A block diagram of the processor structure implied by (2.3) is 
given in Figure 2.1. 

B. Performance 

The complete description of a detection device includes both the processor itself 
(i.e., the mathematical transformation from observation space to decision statistic) and the 
performance of the processor evaluated with respect to the g jodness criterion initially 
chosen. As mentioned earlier, the likelihood ratio has been shown optimum for any good- 
ness criterion based on "detection probability" P(D||H]) and "false alarm probability 
P(D| IHQ) where good decisions are preferred over bad. Thus, the appropriate description 
of performance for a likelihood ratio computing device is its detection and false alarm 
probabilities as a function of decision threshold. The precise definition of these terms 
(which arise from within a RADAR and SONAR context) now will be given. 

Since the likelihood ratio is simply a transformation of random variables (the obser- 
vation vector X) to a one-dimensional decision statistic (A(X)). the likelihood ratio itself 
will be a random variable whose probability density function will depend on which hypoth- 
esis (HQ or H]) is actually active on x- Recalling that the threshold TJ divides the decision 
space, define 

PD ^ PTDiiH,) A  /     p(A|H1)dA (2.4) 

* Compare "♦ Decision 

D, or D0 

PlOj) P%) 

Figure 2.1. Likelihood ratio processor. 



PF Ä P(D,|H0) p(A|Ho)dA. (2.5) 

Peterson, Birdsall, und Fox introduced a graphical representation of Pp versus Pp as a func- 
tion of TJ known as the ROC (receiver operating characteristic) curve (Peterson, Birdsall, and 
Fox, 1954). The ROC curve will be the means by which performance of the detection 
receivers discussed in this report will be evaluated and compared. 

III. SKE (Signal Known Exactly) 

In the SKE problem, the received signal (when present) is known exactly. The 
statistics are Gaussian under both H \ and HQ. 

A(X) = 
P(X|H0) 

(the likelihood ratio) 

TN-l 
- ^ (X(n)-S(n))2 

. (27r02)N/2 

= exp 

= exp 
0~ \n=0 

Note: Bandlimited white Gaussian Noise 

\ No/2 

-U ^ X(n)S(n)-i^ S(n)2 
N-l 

1 
n=0 

o- = N0W 

WHz 

E ^ signal energy 

88 /       S(02dta^^S(n) 
^0 

N-l 

1 
n=0 

(3.1) 

(3.2) 
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Thus, 

N-l N-l 

-0   n=0 u    n=0 

Nn 

A(X) = exp 
N-I 

°2 n=0 N0 

(3.3) 

(3.4) 

Any monotonic function of A(X) will also be an optimal test statistic. 

N-l 
ßn 

n=0 

rNA 
X(t)S(t)dt. 

The last term in each of the above two expressions is known as a "matched filter." 

A(X) = -iL + -L V X(n)S(n) 
N0    *2nto 

No  Noio 

(3.5) 

(3.6) 

Substituting the expression for Sin), 

N-l 
y X(n) cos(27rf0nA) = y [ßn A(X) + -|-j . 

n=0 ^ 0' 
(3.7) 

Since the parameters A. a-, E, and NQ are known in the SKE problem, the above is simply a 
monotonic function of A(X). Thus, a = Re{X(k)}, k = NfgA is an optimal decision statistic 
|see Section VI for the definition of X(k)l. Computing the DFT of the observed sequence 
will be the optimal processor when the signal is known exactly. 

ElalH,!     =4-N 

E|a|H0l     = 0 

N   ■» var|a|H|)   = varlalHgl  = —o-- 

In general, tlie entire ROC curve is necessary to completely specify performance. 
However, in the SKE problem, performance is summarized by a single number known as the 
detectability index d-. In this case, the distribution of the optimal decision statistic is 
Gaussian under H| and HQ with equal variances. By definition (Van Trees, 1968) 



  ^—" 

2 A(E(a|H|l-E(a|Ho|)> 

var(a|Hol 
d^ 

. A2N 

2E 

!=N-SNR;SNR = ^ 
2a2. 

N 
(3.8) 

Ü 

Detection und false alarm probability expressions corresponding to Eqs. (2.4) and (2.5) are 

•■D - <*•■. (^-f) ,3-9) 

where 

dx. (3.11) 

The SKE performance curves are illustrated in Figure 3.1 on normal-normal paper. Note 
that performance increases linearly on the negative diagonal as a function of d. 

IV. SKEP (Signal Known Except for Phase) 

In the SKEP proulem, the received signal (when present) is known except for its 
phase: 

S(n) = Acos(2irtoA + 0), 

where: 0 is a random variable distributed uniformly between -K and n. 

The statistics are conditionally Gaussian under H j and Gaussian under HQ. 

■I AcX^-  I     A(X|0)p(0)d0 
-it 

■il J-ir 

= exp 

exp 

N-l 

- -7- +4 y X(n) cos (2jrf0nA + 
Nn    «- ^ 0    a  n=0 

0) d0 

cos (0 + 0) d0 

(4.1) 

 --     ■    -i 
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Figure 3.1. Performance of the SKE processor. 



where: 

X(k) = a + ib 

k      = NFQA 

ö      = tan"1 (b/a). 

Note the following monotonic function of the likelihood ratio: 

A(X) a (a2 + b:) = |X(k)|2. k = Nf0A. (4.2) 

Thus, a" + b" = |X(k)|- is an optimal decision statistic (see Section VI for definition of 
X(k)I. Computing the power spectrum of the observed sequence is the optimal processor 
when the signal is known except for phase, with the phase having a uniform distribution. 

The ROC curves of the optimal detector for the SKEP problem are given in Figure 
4.1 (Roberts, 1965). The loss in performance due to phase uncertainty can be seen by com- 
paring the SKEP curves with the SKE curves for the same value of 2E/NQ. (See also Van 
Trees, 1968) 

Two important points must be stressed with respect to this problem. First, it appears 
that the loss in performance from SKE can be summarized by noting that the test statistic 
contains twice as much noise (i.e., simply a 3-dB loss). Using this reasoning, the SKEP ROC 
curve in Figure 4.1 for 2E/No = 9 roughly should be parallel to the SKE ROC curve for 
2E/NQ = 4. Note that the two ROC's cross each other, indicating a more fundamental dif- 
ferential in performance than can be accounted for by a simple adjustment of 2E/NQ. 

The second point concerns the use of a detectability index to compare performance 
between two processors. A detectability index for the SKEP processor can be defined as in 
Eq. (3.8). 

IN(k) = -i-|X(k)|2, k = NfQ^ (See Section VI.) 

EIIN(k)|H0]  = o: 

E(lN(k)|H,l  = t^ + ^pN 

var(IN(k)|H0)  = a4 

var|IN(k)|H,l  = a4 + a2^N. 

10 



Figure 4.1. Performance of the SKEP processor. 
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Define: 

(EIINWIHJI-EIINWIHQI)2 

d2 A „„___„________ 
SKEP - var [iN(k)|H0] 

'A-N«2 

o^ Kf-H 
■ (i)2 (4.3) 

On the basis of Eqs. (3.8) and (4.3) alone, one might incorrectly conclude that the SKEP 
processor will perform much better than the SKE processor when E/NQ > 2. Recall that the 
only valid performance comparison is in terms of the ROC curve as shown in Figure 4.1. 
(In retrospect, it can be seen that Eq. (4.3) does not take into account that 
var (I]s](k)|H] ] # var |lN(k)iHol and that the distributions of the test statistic are now 
chi-square instead of Gaussian). 

V. SKEP (Signal Known Except for Phase) INDEPENDENT INCREMENTS 

In the SKEP Independent Increments problem the received signal (when present) is 
known except for its phase 

S(n) = A cos (27rfonA + 0ß), 

where: 

0g is a random variable distributed uniformly between -ir and it. 

«i is constant for «-N < n < (C+I)N, 8 = 0 L-l 
but changes independently between increments. 

Data sequence consists of L blocks, each of length N. The statistics are condition- 
ally Gaussian under H] and Gaussian under HQ. 

L-l 

A(X) =  PI A(Xg) 
c=o 

where: 

X^      = IX(«-N) X((fi+1)-N-1))T 

XK(k) = ag + ibg, k = NIQA. 



Note the following monotonic function of the likelihood ratio: 

L-l 

2 8n I0 fA (afi
2 + b?) ^ = fin A(X) + ^. (5.2) 

i-- 

Furthermore, 

finlQCx) a x-fin>/27rx, x>>I 

j ^T' x<<,• 
When 

N-SNR<<1 t ■ m 
L-l _   ' . .  . - L-1 

Thus, averaging power spectra 

approximately yields an optimal decision statistic for the SKEP independent increments 
problem when N'SNR < < I (See Section VI), 

Performance of the SKEP independent increments processor is given in Figure 5.1 
(Thompson, 1972). ROC curves for I, 5, 10, and 20 independent increments are illustrated. 
The SKE ROC curve for the same 2E/No value is included as a reference. Note that L=l 
corresponds to the SKEP processor discussed in Section IV. It can be seen easily from 
Figure 5.1 the dramatic effect signal instability has on detectability.  (Performance for the 
detector structure in Eq. (5.4) for arbitrary SNR can be found in Marcum, 1960.1 

VI. DISCRETE FOURIER TRANSFORM 

A. Discrete Fourier Transform (DFT) 

N-l 

n=0 
X(k) A   ^ X(n)e-<:ff/N>nk 

a,b-N[o,^o2J under H0. = a + ib; 

X(k)X(k)* = a2 + b2 

13 



 SKEP 

.01 
J I I I I L 

.05 .10 .20      .30    .HO    .50     .60    .70        .80 
P„ 

Figure 5.1. Performance of the SKEP Independent Increments Processor. 2E/NQ ■ 9.0. 
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ElX(k)|H0l = 0 

EIXOOIH,) = 4N; k = Nf0A 

= 0; k *= Nf0A 

var lX(k)|H0l = No2 

varlXWIH,) = No2 

Computing the DFT of the observed sequence is the optimal processor when the signal is 
known exactly (See Section 111). 

B. Power Spectrum (Periodogram) 

lN(k) ^ Jj |X(k)|2 

-Jr(a2 + b2); 
N 

a,b,~Nfo,|-o2J under H0. 

(See also Oppenheim and Schäfer, 1975.) 

ElIN(k)|H0l = o2 

EUNWIH,]  = O
2
 + ~N; k = Nf0A 

= o2; k *= Nf0A 

var llN(k)|H0l = o4 

■» 

varll^lH,!  = o4 + o2Aj:N; k = Nf0A 

= o4; k ¥= Nf0A. 

Note that the statistics of \^(V.) are chi-square. Computing the power spectrum of 
the observed sequence is the optimal processor when the signal is known except for phase 
with the phase having a uniform distribution (See Section IV). 

15 
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C. Avcraie Power Spectrum 

Average K spectra each derived from a time sequence of length N. 

K-1 

i-0 

'ilk™*2 
W) 

■KZN(ai+bi) 

i«0 

ElIN(k)avg|H0l - o2 

EUNOC^IH,! -a2 + ^-N; k - Nf0A 

-«2; k * Nf0A 

var llN(k)avg|H j J - i ^a4 + a2 ^- N}; k » WQA 

-io4; k^NfQA. 

Averaging power spectra computed from consecutive blocks of the observed sequence closely 
approximates the optimal processor for N-SNR << 1 when the signal is known except for 
phase, with the phase being uniformly distributed in each increment and independent between 
increments (See Section V). 

VII. AUTOCORRELATION FUNCTION 

A. Autocorrelation Function 

N-l-m 
Rxx^m> ^ i   2    X(n) X(n+n,)' mis0'' N", • 

n=0 

Note: Defining Rxx(-m) ■ RXx(m) 

16 
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IN(k) = -jljIXdc)!2 

N-l 
=      ^     Rxx(m)e^2,r/N)mk 

m=-(N-l) 
(See Section VI for definition of IN(k).) 

E(Rxx(in)|Ho) ■ o2, m=0 

= 0, in>0 

r 
2 

i    A2 

EIR^dn^H,) = o2 + ^-, m=0 

N-mA2 

-——— cos 2nfnmA, m>0 
N     2 

varlRxx(m)|H0I = -^a4, in=0 

N-m ^n —-, m>0 
N2 

varlR^dn)^,) = ? 

Note that the statistics of Rxx(ni) are not Gaussian. 

Define: 
L-l 

Sxx(k,6)^   J Rxx^ + S)^2^^ l<L<N-6. 
m=0 

Sxx(k, 8) is the DFT of an L-point segment of the autocorrelation function. 

ElSxx(k,6)|H0) = a2, 6 = 0 

= 0, 6>0 

EIS^MMH,]  =a2
+^(i-^). 8=0:k = NfoA 

17 
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var (Sxx(k. 6)|H01 = a4 [1 + -^ (-L2 + 2NL + L)| , 6 « 0 

" ^"f-1 ^ (-L2 + 2L(N - «) + L1 , 6 > 0 
l2>l

2 J 

var lSxx(k, 6)^,1  = ? 

In general, Sxx(k, 6) is complex. When 8 = 0, the expression for variance yields 
twice the value obtained in Section VI B. In practice, only Re |Sxx(k, 0)| would be used. 

B. Averaged Autocorrelation Function 

Average K autocorrelation functions, each derived from a time sequence of length N. 

K-l 

Rxx(m)avg = -r 2 Rxx(m)i 
i=0 

K-l    N-l-m 

= K S N    S    X(n)i X(n+m)i' m=0 N■, 

i=0       n=0 

E[Sxx(k, 6)|H01  = a2, 5 = 0 

= 0, 6 > 0 

ElSxx(M)|Hil = a2
+^(^^), 8 = 0;k = Nf0A 

var ISxx(k,6)|H0 = 7 [^ + ^T ("L2 + 2NL + L)] ' 6'0 

6>0 

var (Sxx(k. 6)^,1 = ? 

C. Windowed Autocorrelation Function 

Consider the autocorrelation function created from a time sequence of length N. 
Using a triangular sequence (Bartlett window), window this function back to length L + 6. 
That is. 

18 
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R^Cm) = • Rvv(ni) 'XX 

L + 6-1 

The above is equivalent to defining 

N-I-m 
R^Crn) A L^-m 1   ^    X(n)X(n + m), m = 0,1,, 

n=0 

ElRx^(m)|H0l  = a2, m = 0 

= 0, m > 0 

EIR^nOIH,) = o2+^, m = 0 

_ /L + 6-m\ /N - m\ A2      , .     A 

Define: 

,LW«-I. 

var lRx^(m)|Hol =-^o4. m = 0 

vaMR^nDIH,) = ? 

m>0 

Sx^(k(6)A   y Rx^(m + 6)e^27r/L)mk 

ni=0 

ElS^Ck, 6)|Hol = a2, 

= 0. 

6=0 

6>0 

ElS^k, 6)111,1  so2+^l^-^], 6 = 0:k = Nf0A 

2  \:     4(Lf6)y 0 

in>0 

19 



var IS^dc, 8)|H01 = o4^i{2+|- + -Lj . 6 = 0:N>>L + 6 
Li 

(L + 6):N6 l     L   L2' 
N>>L+6 

varlS^ik, 6)^,1 = ? 

Note that windowing (VII C) and averaging (VII B) are not equivalent. Averaging 
autocorrelation functions implies that the data has been broken into K independent blocks, 
each of length N. A windowti autocorrelation function is a moving average function across 
the entire data sequence. Thus, each data sample is allowed to interact with data up to 
L + 5 lags into the past. In averaging, interaction between data samples is restricted to 
within the individual data blocks. 

VIII. REC (Recursive Exponential Correlator) 

Weight vector 

WO)^ lW0(i) WL_,(j)lT 

Wm(j+1) = (l-/J)Wm(j) + ßX(j-6-m)X(j) 

Wm(j) =     2,    <'-ß),",~kßX(k-6-m)X(k); Wm(0) = 0 
k=S+m 

ilWm(j)IHol = o2 [1 - (1 - /jy-'l , 5 = m = 0 

= 0, 8 = 0, m>0 

= 0, 6 > 0 

EtWma)IH,l = ~cos2irf0(6 + m) (I-(!-/J)»^^"1^1], 6>0 

var lWmU)|H0l  = o4 jj-   '    ('    P)  , 6 > 0 
L 2ß~ß~ J 

varlWm0)IH,l  = ? 

Define: 

L-l 

1 
m=0 

Hj(k) A   y Wm(j)e-'(:'r/L)nik 
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v 

E[Hj(k)|H0l = ^ll-d-^-h, 6 = 0 

= 0, 6>0 

EfHjdOIH,) = o'llMI-^-1! +
4

:
(T-

C
)' 6=0 

= iL2|l.c)ei2Tfo«^ 6>0 

where: 

CS(1 i-i-6  i  r  i-(i-grLl 
^o^b-d-r'Mj 

var[Hj(k)|H0) . ^ L(l-^(HM)/izii^Öl 

varlHjdc^H,)  = ? 

The REC is similar to the windowed autocorrelation function of Section VII C in 
that both are moving average filters. In the former, the past is exponentially weighted 
instead of uniformly as in the latter. Additionally, the REC closely resembles the weight 
vector of the ALE (adaptive line enhancer) (Widrow, et al., 1975) under the condition of 
low signal-to-noise ratio. 

IX. SUMMARY 

The primary emphasis in this report has been the relationship between currently 
employed methods for the detection of a sinusoid obscured by white noise and three classi- 
cal problems of detection theory. It was shown that the discrete Fourier transform, the 
power spectrum, and the averaged power spectrum are each the optimal processor (in the 
sense of making a least-risk decision) for a particular signal model. Of secondary importance, 
the first- and second-order statistics under H] (signal plus noise) and HQ (noise alone) were 
compiled for several related processing schemes of current interest. 
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